Информационные технологииStfw.Ru 🔍
🕛

Родственные интерфейсы и преобразователи уровней

В последовательном интерфейсе далеко не всегда используют двуполярные сигналы RS-232C — это неудобно, хотя бы из-за необходимости использования дву-полярного питания приемопередатчиков. Сами
В последовательном интерфейсе далеко не всегда используют двуполярные сигналы RS-232C - это неудобно, хотя бы из-за необходимости использования дву-полярного питания приемопередатчиков. Сами микросхемы вышеописанных при-емопередатчиков UART работают с сигналами логики ТТЛ или КМОП; такие же сигналы используются, например, и в сервисных портах винчестеров и других устройств. Многие устройства (в том числе карманные ПК и мобильные телефоны) имеют внешний последовательный интерфейс с уровнями низковольтной логики. Конечно, сигналы обычной логики не имеют столь высокой помехоустойчивости, как RS-232C, но не всегда это и требуется.
Для взаимного преобразования уровней интерфейса RS-232C и логики специально выпускаются буферные микросхемы приемников (с гистерезисом) и передатчиков двуполярного сигнала. При несоблюдении правил заземления и коммутации они обычно становятся первыми жертвами «пиротехнических» эффектов. Раньше их нередко устанавливали в «кроватки», что облегчало их замену. Цоко-левка популярных микросхем формирователей сигналов RS-232C приведена на рис. 2.7. Часто буферные схемы входят прямо в состав интерфейсных БИС. Это удешевляет изделие, экономит место на плате, но в случае аварии оборачивается крупными финансовыми потерями. Вывести из строя интерфейсные микросхемы замыканием сигнальных цепей маловероятно: ток короткого замыкания передатчиков обычно не превышает 20 мА.
В специальных кабелях-адаптерах часто применяют преобразователи уровней фирмы Maxim и Sypex; они удобны тем, что содержат и приемники, и передатчики. Из широкого ассортимента этих преобразователей легко подобрать подходящий по количеству приемников и передатчиков, а также по питанию (однополяр-ному, двуполярному, низковольтному).


С ^ управление гистерезисом (ТТЛ), Y - выход ТТЛ); б - передатчик 1488
(А, В - входы ТТЛ, Y - выход RS-232, VDD = +12 В, VEE = -12 В); в - таблица
состояния выходов передатчика (*1 В - логическая единица)
Когда требуется большая помехоустойчивость (дальность и скорость передачи), применяют иные электрические варианты последовательных интерфейсов: RS-422A (V.11, Х.27), RS-423A (V.10, Х.26), RS-485. На рис. 2.8 приведены схемы соединения приемников и передатчиков, а также показаны ограничения на длину линии (L) и максимальную скорость передачи данных (V). Несимметричные линии интерфейсов RS-232C и RS-423A имеют самую низкую защищенность от синфазной помехи, хотя дифференциальный вход приемника RS-423A позволяет в какой-то мере исправить ситуацию. Лучшие параметры имеют интерфейсы RS-422A и RS-485, работающие на симметричных линиях связи. В них для передачи каждого сигнала используются дифференциальные приемопередатчики с отдельной (витой) парой проводов для каждой сигнальной цепи.



Интерфейсы EIA-RS-422 (ITU-T V.ll, X.27) и EIA-RS-485 (ISO 8482) используют симметричную передачу сигнала и допускают как двухточечную, так и шинную топологию соединений. В них информативной является разность потенциалов между проводниками А и В. Если на входе приемника UA-UB>0,2 В (А положи-тельнее В) - состояние «выключено» (space), UA-UB<-0,2 В (А отрицательнее В) - состояние «включено» (mark). Диапазон |UA-UB|<0,2 В является зоной нечувствительности (гистерезис), защищающей от воздействия помех. На выходах передатчика сигналы UA и UB обычно переключаются между уровнями 0 и +5 В (КМОП) или +1 и +4 В (ТТЛ), дифференциальное выходное напряжение должно лежать в диапазоне 1,5-5 В. Выходное сопротивление передатчиков 100 Ом. Интерфейсы электрически совместимы между собой, хотя и имеют некоторые различия в ограничениях. Принципиальное отличие передатчиков RS-485 - воз-можность переключения в третье состояние. Передатчики RS-422/485 совместимы с приемниками RS-423. Основные параметры интерфейсов приведены в табл. 2.3, топологию соединений иллюстрирует рис. 2.9.
Чтобы увеличить число узлов, можно повысить входное сопротивление приемников, но при этом снижается допустимая скорость или максимально возможная дальность передачи. Максимальная скорость передачи на коротких расстояниях (до 10 м) ограничивается быстродействием передатчиков (достижима частота 25 МГц). На средних расстояниях ограничение определяется емкостью кабеля (1200 бит/с - 25 нФ, 9600 бит/с - 30 нФ, 115 кбит/с -250 пФ). Максимальная дальность (1200 м) ограничена сопротивлением петли постоянному току.
Таблица 2.3. Параметры интерфейсов RS-422 и RS-485
Параметр RS-422 RS-485
0,2 0,2
-6,8...+6,8 -6,8...+11,8
-7...+7 -7...+12
4 12
10060 60
1 передатчик 32 (передатчиков,
+10 приемников приемников или
их комбинаций)
1200 (100 кбит/с) 1200 (100 кбит/с)
12(10Мбит/с) 12(10Мбит/с)
На дальнем конце На обоих концах
от передатчика
<150Ha шинуGND <250 на шину
с потенциалом
-7...+12 Вили между
проводами А и В
Порог срабатывания, |UA-UB|,В Допустимое напряжение синфазной помехи, В1 Допустимое напряжение на входах, В1 Входное сопротивление приемника, кОм
Минимальное сопротивление нагрузки передатчика, Ом
Максимальное число узлов
Максимальная длина, м Терминаторы, R=100ОМ Ток короткого замыкания, мА


1 Напряжение измеряется относительно «схемной земли» узла.

А б в
2.9. Топология интерфейсов: а - RS-422, б - RS-485 четырехпроводный, в - RS-485 двухпроводный
Интерфейс RS-485 может быть в двух версиях: двухпроводной и четырехпровод-ной. Четырехпроводная версия (рис. 2.9, б) выделяет задающий узел (master), передатчик которого работает на приемники всех остальных. Передатчик задающего узла всегда активен - переход в третье состояние ему не нужен. Передатчики остальных ведомых (slave) узлов должны иметь тристабильные выходы, они объединяются на общей шине с приемником ведущего узла. В двухпроводной версии (рис. 2.9, в) все узлы равноправны.
В вырожденном случае - при двухточечном соединении - интерфейсы RS-485 и RS-422 эквивалентны, и третье состояние не используется.
Для определенности состояния покоя шины RS-485, когда нет активных передатчиков, на линию устанавливают активные терминаторы, «растягивающие» потенциалы проводов. В покое провод В должен иметь более положительный потенциал, чем А.
При многоточечном соединении необходимо организовать метод доступа к среде передачи. Чаще всего используют полинг (polling) - опрос готовности к передаче, выполняемый ведущим устройством, или передачу права доступа в соответствии с определенным (установленным) регламентом. Иногда используют и методы случайного доступа (аналогично Ethernet).
Дифференциальный вход интерфейсов защищает от действия помех, но при этом должно осуществляться соединение «схемных земель» устройств между собой и с шиной заземления. Для соединения устройств между собой используют третий провод интерфейса (можно и экран). Для того чтобы по третьему проводу не протекал большой ток, выравнивающий «земляные потенциалы», в его цепь включают резисторы (рис. 2.10).
Интерфейс RS-422 часто используется для подключения периферийных устройств (например, принтеров). Интерфейс RS-485 популярен в качестве шин устройств промышленной автоматики.
Интерфейс «токовая петля» для представления сигнала использует не напряжение, а ток в двухпроводной линии, соединяющей приемник и передатчик.



Логической единице (состоянию «включено») соответствует протекание тока 20 мА, а логическому нулю - отсутствие тока. Такое представление сигналов для вышеописанного формата асинхронной посылки позволяет обнаружить обрыв линии - приемник заметит отсутствие стоп-бита (обрыв линии действует как постоянный логический нуль).

2.10. Соединение «схемных земель» для интерфейсов RS-422 и RS-485
Токовая петля обычно предполагает гальваническую развязку входных цепей приемника от схемы устройства. При этом источником тока в петле является передатчик (этот вариант называют активным передатчиком). Возможно и питание от приемника (активный приемник), при этом выходной ключ передатчика может быть также гальванически развязан с остальной схемой передатчика. Существуют упрощенные варианты без гальванической развязки, но это уже вырожденный случай интерфейса. Заметим, что интерфейс MIDI (см. п. 8.5.3) с «классической» токовой петлей несовместим.
Токовая петля с гальванической развязкой позволяет передавать сигналы на расстояния до нескольких километров, но при невысоких скоростях (выше 19 200 бит/с не используют, а на километровых расстояниях допустима скорость до 9600 бит/с и ниже). Допустимое расстояние определяется сопротивлением пары проводов и уровнем помех. Поскольку интерфейс требует пары проводов для каждого сигнала, обычно используют только два сигнала последовательного интерфейса (4-проводная линия). В случае двунаправленного обмена применяются только сигналы передаваемых и принимаемых данных, а для управления потоком используется программный метод XON/XOFF. Если двунаправленный обмен не требуется, применяют одну линию данных, а для управления потоком обратная линия задействуется для сигнала CTS (аппаратный протокол) или встречной линии данных (программный протокол). При надлежащем ПО одной токовой петлей можно обеспечить двунаправленную полудуплексную связь двух устройств. При этом каждый приемник «слышит» как сигналы передатчика на противопо-ложной стороне канала, так и сигналы своего передатчика. Они расцениваются коммуникационными пакетами просто как эхо-сигнал. Для безошибочного приема передатчики должны работать поочередно.
Токовая петля позволяет использовать выделенные физические линии без модемов, но на малых скоростях. Иногда по токовой петле подключают терминалы с интерфейсом RS-232C, если не хватает штатной длины интерфейса или требуется гальваническая развязка. Преобразовать сигналы RS-232C в токовую петлю несложно - на рис. 2.11 приведена простейшая схема преобразователя примени-



тельно к подключению терминала. Для получения двуполярного сигнала, требуемого для входных сигналов СОМ-порта, применяется питание от интерфейса. Схема может быть усложнена для защиты оптронов от перегрузки и улучшения формы потенциальных сигналов. Допустимая скорость определяется и быстродействием применяемых оптронов (скорость 9600 бит/с достигается практически на любых оптронах).

Также по теме:
Новые программы для Windows, Linux и Android.