От электронных ламп к транзисторам
После появления UNIVAC темпы эволюции компьютеров заметно ускорились. В первом поколении компьютеров использовались вакуумные лампы, на смену которым пришли меньшие по размерам и более эффективные транзисторы.
🕛 23.09.2009, 16:57
Современный компьютер представляет собой набор электронных переключателей, которые используются как для представления информации в двоичном коде (в виде двоичных единиц - битов), так и для управления ее обработкой. Эти электронные переключатели могут находиться в двух состояниях - включено и выключено, что позволяет использовать их для хранения двоичной информации.В первых компьютерах использовались так называемые триоды - вакуумные лампы, изобретенные Ли Де Форестом (Lee De Forest) в 1906 году. Триод состоит из трех основных элементов, расположенных в стеклянной вакуумной лампе: катода, анода и разделяющей их сетки. При нагревании катода внешним источником питания он испускает электроны, которые собираются на аноде. Сетка, расположенная в середине лампы, позволяет управлять потоком электронов. Когда на сетку подается ток отрицательного потенциала, электроны отталкиваются от сетки и собираются вокруг катода; при подаче тока положительного потенциала электроны проходят через сетку и улавливаются анодом. Таким образом, изменяя значение потенциала сетки, можно моделировать состояние анода включено/выключено.
К сожалению, вакуумная лампа в качестве переключателя оказалась малоэффективной. Она потребляла много электроэнергии и выделяла большое количество тепла - весьма существенная проблема для вычислительных систем того времени. Вакуумные лампы оказались ненадежными, главным образом из-за постоянного перегрева: в больших системах лампы приходилось менять каждые два часа или даже чаще.
Изобретение транзистора (или полупроводника) явилось одним из наиболее революционных событий эпохи ПК. В 1947 году инженеры Bell Laboratory Джон Бардин (John Bardeen) и Уолтер Браттейн (Walter Brattain) изобрели транзистор, который был представлен широкой общественности в 1948 году. Несколько месяцев спустя Уильям Шокли (William Shockley),
один из сотрудников компании Bell, разработал модель биполярного транзистора. В 1956 году эти ученые были удостоены Нобелевской премии в области физики. Транзистор, который, по сути, представляет собой твердотельный электронный переключатель, заменил громоздкую и неудобную вакуумную лампу. Поскольку потребляемая транзисторами мощность незначительна, построенные на их основе компьютеры имели гораздо меньшие размеры и отличались более высоким быстродействием и эффективностью.
Сетка
Нагретый катод
+
Пластина
Вакуумная трубка триода
Транзисторы состоят главным образом из кремния и германия, а также добавок определенного состава. Проводимость материала зависит от состава введенных примесей и может быть отрицательной, т.е. N-типа, или положительной, P-типа. Материал обоих типов является проводником, позволяющим электрическому току выбирать любое направление. Однако при соединении материалов разных типов возникает барьер, в результате чего электрический ток определенной полярности течет только в одном направлении. Именно поэтому такой материал называется полупроводником.
Для создания транзистора материалы P- и N-типа следует разместить “спиной друг к другу”, т.е. поместить пластину одного типа между двумя пластинами другого типа. Если материал средней пластины обладает проводимостью P-типа, то транзистор будет обозначен как NPN, а если N-типа - то как PNP.
В транзисторе NPN одна из пластин N-типа, на которую обычно подается ток отрицательного потенциала, называется эмиттером. Средняя пластина, выполненная из материала P-типа, называется базой. Вторая пластина полупроводника N-типа называется коллектором.
Транзистор NPN по своей структуре похож на триодную электронную лампу: эмиттер является эквивалентом катода, база эквивалентна управляющей сетке, а коллектор подобен аноду. Изменяя потенциал электрического тока, проходящего через базу, можно управлять потоком электронов, проходящим между эмиттером и коллектором.
По сравнению с электронной лампой транзистор, используемый в качестве переключателя, обладает гораздо большей эффективностью, причем его размеры могут быть поистине микроскопическими. В июне 2001 года разработчики компании Intel представили наименьшие и при этом наиболее быстродействующие кремниевые транзисторы, величина которых достигает всего 20 нанометров (1 нанометр равен 1 миллиардной части метра). Как ожидается, эти транзисторы впервые появятся в процессорах образца 2007 года, которые будут содержать около миллиарда транзисторов, работающих с тактовой частотой 20 ГГц! Для сравнения: по данным на 2003 год, процессор AMD Athlon 64 содержит более 105,9 млн. транзисторов, а Pentium 4 Extreme Edition включает более 178 млн. транзисторов.
Переход с вакуумных электронных ламп на транзисторы положил начало процессу миниатюризации, который продолжается по сей день. Современные модели портативных или карманных компьютеров, работающих на аккумуляторах, имеют более высокую производительность, чем системы, занимавшие когда-то целые комнаты и потреблявшие огромное количество электроэнергии.
Хотя вакуумные лампы были вытеснены транзисторами и интегральными схемами, они все же остаются популярными в сфере высококачественного аудиооборудования, так как позволяют достичь более чистого и ясного звучания, чем транзисторы. Поскольку ПК все чаще используются для обработки и воспроизведения звука, компания AOpen (подразделение Acer) представила системную плату (AX4B-533 Tube) со сдвоенной вакуумной лампой и специальной архитектурой, уменьшающей генерацию помех. Использование этой системной платы позволяет достичь великолепных результатов при воспроизведении музыкальных композиций.