Информационные технологииStfw.Ru 🔍
🕛

Обнаружен новый вид магнетизма в немагнитных материалах — он обещает прорыв в системах хранения данных

Теоретически предсказанное явление альтермагнетизма (altermagnetism) впервые получило подтверждение в научном эксперименте. Международная группа учёных наблюдала магнитный вихрь в
Обнаружен новый вид магнетизма в немагнитных материалах — он обещает прорыв в системах хранения данных
Теоретически предсказанное явление альтермагнетизма (altermagnetism) впервые получило подтверждение в научном эксперименте. Международная группа учёных наблюдала магнитный вихрь в материале, который никогда не проявлял магнитных свойств. Таких материалов может быть сотни, и это — возможность тысячекратно уплотнить магнитную запись данных и совершить новый прорыв в вычислениях.


Oliver Amin/University of Nottingham

Альтермагнетики сочетают в себе — в едином материале — полезные свойства ферромагнетиков и антиферромагнетиков. Они потенциально могут привести к тысячекратному увеличению быстродействия микроэлектронных компонентов и цифровой памяти, будучи при этом более надёжными и энергоэффективными. Это третий класс магнетизма, который до этого года существовал лишь в моделях.
Старший научный сотрудник Оливер Амин (Oliver Amin), возглавлявший эксперимент и являющийся соавтором исследования, сказал: «Наша экспериментальная работа обеспечила связь между теоретическими концепциями и реализацией в реальной жизни, что, как мы надеемся, откроет путь к разработке альтернативных магнитных материалов для практического применения».

Магнитные свойства материала зависят от ориентации спина его электронов. В ферромагнитных материалах, таких как железо, которые обладают сильной реакцией на магнитные поля, спины всех электроны выровнены в одном направлении. В антиферромагнетике, в случае другого типа магнетизма, спины соседних электронов направлены в противоположных направлениях и, следовательно, нейтрализуют друг друга, поэтому материал в целом не реагирует на внешнее поле. В случае нового типа магнетизма спины электронов на соседних позициях также разнонаправлены, но эти направления постоянно и симметрично поворачиваются.
Новое экспериментальное исследование было проведено на международной установке MAX IV в Швеции. Это ускоритель электронов или синхротрон, который генерирует рентгеновские лучи. Рентгеновские лучи направляются на магнитный материал, и электроны, испускаемые поверхностью образца, регистрируются с помощью специального микроскопа. Это позволяет получить изображение магнетизма в материале с разрешением вплоть до наноразмерных. В образце теллурида марганца — на его поверхности — учёные обнаружили циркулирующие магнитных вихри, которые укладываются в теоретические предсказания по альтермагнетизму.
Теллурид марганца, вероятно, не подойдёт для промышленного применения явления, хотя другой немагнитный полупроводник — антимонид хрома — вполне может им стать. Физики предсказывают, что более 100 соединений будут проявлять немагнитное поведение. За последний год опубликовано около 200 работ по альтермагнетизму, что говорит об интересе и нужде в новой и более плотной технологии записи данных. С такой активностью учёных нельзя исключать, что уже через 10 лет альтермагнетизм заявит о себе в виде коммерческого продукта. А вдруг?

Также по теме:
Наука – это особый вид деятельности человека, которая имеет своей целью познание окружающей действительности для использования его результатов в совершенствовании материальной и духовной жизни.