Информационные технологииStfw.Ru 🔍
🕛

Способы задания и стабилизаии исходного режима

При построении усилительных каскадов важно не только задать требуемый исходный режим, характеризуемый величиной , но и обеспечить его стабильность. Основными источниками нестабильности в
При построении усилительных каскадов важно не только задать требуемый исходный режим, характеризуемый величиной , но и обеспечить его стабильность. Основными источниками нестабильности в каскадах на биполярных транзисторах являются:
 изменение обратного тока коллектора при изменении температуры; в интегральных микросхемах применяются в основном кремниевые транзисторы, у которых абсолютное значение мало, поэтому, несмотря на существенную температурную зависимость, влияние оказывается малым;
 изменение статического коэффициента усиления тока ;
 смещение входной характеристики влево при увеличении температуры:

Рассмотрим влияние перечисленных факторов нестабильности при различных способах задания исходного режима.

Смещение фиксированным током базы

Смещение в схеме 3.19 определяется током смещения , который зависит от сопротивления резистора RБ.
В большинстве случаев сопротивление RБ значительно больше сопротивления участка база-эмиттер транзистора , а , поэтому
.


3.19. Каскад ОЭ с фиксированным током базы.
Поскольку смещение входной характе-ристики транзистора при изменении температуры здесь несущественно, но сохраняется сильная зависимость от величины .
Для уменьшения нестабильности исходного режима применяется схема 3.20. В схеме 3.20 (не учитывая ток ) и ,поэтому:



3.20. Каскад ОЭ с ООС.
.
При увеличении уменьшается, соответственно уменьшается , что препят-ствует увеличению .
В схеме 3.20 имеет место параллельная ООС по напряжению, что приводит к уменьшению входного сопротивления каскада и коэффициента усиления.


3.21. Каскад ОЭ без ООС по переменному току. Чтобы избежать этого, можно использовать схему 3.21.
В данной схеме ООС по постоянному току сохранилась, что и требуется, а по переменному току исчезла бла-годаря введению фильтра .



3.22. Каскад ОЭ с и фильтром .
Такой же результат достигается в схеме 3.22.
Здесь и
.
ООС по переменному току в данной схеме отсутствует благодаря наличию фильтра , а по постоянному току сохраняется.

Смещение фиксированным напряжением база-эмиттер



3.23. Каскад ОЭ с фиксированным .
В схеме 3.23 сопротивления резисторов и выбирают таким образом, чтобы ток делителя был больше тока покоя цепи базы хотя бы в 5...10 раз. Тогда напряжение , но ре-жим нестабилен – ток будет изменяться как при изменении , так и при изменении температуры:


Для стабилизации режима в цепь эмиттера включают резистор . При этом: .
При увеличении увеличивается падение напряжения на , в результате уменьшается, что препятствует увеличению и соответственно .
В данной схеме имеет место последовательная ООС по току. Результат: увеличивается входное сопротивление, но уменьшается коэффициент усиления. В случаях, когда это нежелательно, шунтируют конденсатором . Величина емкости выбирается так, чтобы на рабочих частотах .
Величина выбирается исходя из допустимого падения напряжения . Обычно .

Смещение фиксированным током эмиттера

Токи электродов биполярного транзистора, работающего в усилительном режиме, связаны соотношением: . Поскольку , то при стабильной величине величина также будет стабильной.
В усилителях на дискретных элементах этот вариант находил ограниченное применение из-за сложности реализации. В настоящее время этот метод широко применяется в монолитных ИС. Схема наиболее распространенного варианта стабилизатора тока приведена на 3.24. Генератор стабильного тока (ГСТ) собран на транзисторах Т1 и Т2. На Т3 собран усилитель, режим работы которого необходимо стабилизировать.


3.24. Генератор стабильного тока.
Рассмотрим рабо-ту ГСТ. Транзисторы Т1 и Т2 идентичны по пара-метрам и находятся в одинаковом темпера-турном режиме (изготав-ливаются в едином технологическом цикле и расположены на кристал-ле близко друг от друга). Поэтому их входные характеристики идентич-ны, а 1 = 2= ( – статический коэффици-ент передачи входного тока).
, т.к. эмиттерные переходы Т1 и Т2 соединены параллельно. В итоге: . Т1 работает в активном режиме, так как его коллекторный переход смещен в обратном направлении перепадом напряжения на объемном сопротивлении базы за счет протекания тока . Т2 также работает в активном режиме, что обеспечивается подбором R.
В схеме ГСТ имеет место следующее соотношение:
(3.30)
С другой стороны , (3.31)
Приравняв(3.30) и (3.31), получаем: (3.32)
Поскольку , то согласно (3.32) величина обратно пропорциональна величине . Но . Следовательно, величина практически не зависит от величин , что и требуется.


3.25. Смещение входной характеристики при изменении температуры. Рассмотрим влияние смещения входной характеристики при изменении температуры. Так как , то величина при стабильных Е и R практически не изменяется при изменении температуры.

Следовательно, смещение входной характеристики приводит к изменению ( 3.25). Учитывая, что и , из (3.32) получаем: и , где .


3.26. ГСТ с резисторами в эмиттерной цепи. Исследования показывают, что у маломощных транзисторов . Следовательно, изменение , происходящее при изменении температуры, не приводит к существенным изменениям , т. е. .
Разновидностью рассмотрен-ной схемы ГСТ является схема с резисторами в эмиттерных цепях Т1 и Т2 ( 3.26).
Благодаря введению глубокой ООС по току эта схема становится малочувствительной к изменениям напряжения питания Е (в исходном
варианте практически прямо пропорционально Е).
Кроме этого, ООС по току приводит к увеличению выходного сопротивления ГСТ, что также является положительным фактором (идеальный ГСТ имеет ).

Также по теме:
Новые программы для Windows, Linux и Android.