Информационные технологииStfw.Ru 🔍
🕛

Микропроцессорные комплекты бис

Микропроцессорные средства включают: МПК БИС, одно¬кристальные и одноплатные микропроцессоры, микро-ЭВМ, микро¬контроллеры, устройства ввода-вывода, хранения, отображения, коммутации информа
Микропроцессорные средства включают: МПК БИС, однокристальные и одноплатные микропроцессоры, микро-ЭВМ, микроконтроллеры, устройства ввода-вывода, хранения, отображения, коммутации информации и т. п. Основой построения МПС являются: МПК БИС, микросхемы запоминающих устройств и преобразования вида информации (АЦП, ЦАП).
Микропроцессорный комплект БИС представляет собой набор электрически совместимых цифровых БИС, достаточный для построения различных МПУ. Существующие МПК БИС можно разделить на две группы: с фиксированной системой команд и секционированные. Основное различие этих комплектов заключается в способе реализации устройства управления. В первом случае оно реализовано на комбинационных схемах и конструктивно объединено с арифметическим устройством в одной БИС. Это объединение представляет собой функционально законченный микропроцессор с фиксированной системой команд, ориентированной на широкий круг решаемых задач. Такие МПК обычно имеют стандартные отладочные средства и относительно развитое программное обеспечение, что обеспечивает их широкое применение.
Примером однокристального микропроцессора является центральный процессорный элемент КР580ИК.80. Особенности построения и реализации арифметического и управляющего устройств делают недоступным программисту микропрограммный уровень управления. Он оперирует командами, которые не может изменить. Вместе с тем проектирование конструктивно встраиваемых в РЭА МПУ предполагает их специализацию в соответствии с реализуемым алгоритмом. Кроме того, как .будет показано в гл. 2, одним из основных требований, предъявляемых к МПУ, является реальный масштаб времени вычислений решаемых алгоритмов. Необходимость специализации системы команд и структуры проектируемых МПУ ограничивает применение однокристальных микропроцессоров в РЭА.
Основной элементной базой конструктивно встраиваемых в РЭА МПУ являются секционированные МПК БИС, у которых в отличие от однокристальных микропроцессоров управляющее устройство реализовано на принципах микропрограммного управления. Такой подход обеспечивает доступ разработчика к уровню микрокоманд, что позволяет изменять команды и соответствующие им микропрограммы исходя из решаемых алгоритмов. Секционированные МПК имеют различные системы команд, разрядность, типы интерфейса ввода-вывода и т. п. Проектируемые на основе секционированных МПК МПУ обладают большой гибкостью, так как расширение функциональных возможностей обеспечивается изменением отдельных микрокоманд или заменой всей памяти микропрограмм.
Построение арифметического устройства требуемой разрядности осуществляется объединением 4-, 8- или 16-разрядных процессорных секций. Микропрограммное устройство управления выполняется на одной или нескольких БИС. Соединив между собой несколько БИС микропрограммного управления, можно увеличить объем микропрограммной памяти. Объединение арифметического и управляющего устройств позволяет получить базовую структуру микропроцессора. Подключение к ней специализированных БИС ввода-вывода, вспомогательных аппаратных микропроцессоров и других специализированных микросхем приводит к повышению производительности МПУ.
Использование секционируемых МПК обеспечивает гибкость проектирования как по аппаратным решениям, так и по реализации требуемой системы команд. Однако при этом предполагается, что разработчик знает возможности и особенности всех микросхем, входящих в состав МПК, принципы объединения их в уст-ройство, организацию синхронизации в устройстве; владеет методами разработки и отладки микропрограмм. Вместе с тем работа на микропрограммном уровне создает и определенные трудности. Микропрограммный уровень определяется конкретными схемными решениями, поэтому программирование на этом уровне требует от разработчика знаний аппаратных особенностей МПК, учета временных соотношений и т. п. Кроме того, разработка оригинальной .системы команд приведет к необходимости проектирования дополнительных аппаратных средств и программного обеспечения, предназначенного для отладки программ. Это обуславливает увеличение сроков [разработки и повышение стоимости МПУ, проектируемых «а основе секционируемых МПК БИС.
Микропроцессорные комплекты БИС отличаются своими характеристиками, основными из которых являются: число БИС в комплекте, число внутренних магистралей, разрядность, система микрокоманд, число регистров общего назначения, число уровней прерывания, быстродействие, число буферных регистров (портов) ввода-вывода (Явв, ЯВЫв) и др.
Число БИС в комплекте во многом определяет функциональные возможности МПК. Наличие в составе комплекта разнообразных специализированных БИС позволяет проектировать функционально законченные МПУ при минимальном использовании микросхем средней и малой степени интеграции. Если число специали-зированных БИС в МПК ограничено, то некоторые функциональные узлы приходится проектировать на (микросхемах малой и средней степени интеграция, что снижает плотность упаковки МПУ и ухудшает его конструктивные параметры. Кроме того, использование специализированных БИС для аппаратной реализации некоторых сложных (с вычислительной точки зрения) функций повышает производительность МПУ.
Как было показано в § 1.1, число внутренних магистралей микропроцессорных БИС колеблется от одной до трех. При выборе МПК необходимо учитывать, что уменьшение числа магистралей снижает процент использования площади кристалла под магистрали, а также быстродействие этих микросхем.
Большинство современных МПК имеют разрядность 4, 8 или 16 бит. Ограничение разрядности обусловлено размерами кристалла и технологическими допусками изготовления логических элементов. Биполярные секционированные МПК обычно имеют разрядность 4 и 8 бит. Разрядность МПК, выполненных по МОП-тех-нологии, достигает 16 бит.
Система микрокоманд (как и число БИС) определяет функциональные возможности МПК. Системы микрокоманд распространенных МПК БИС, их (форматы, разрядность, особенности реализации подробно рассмотрены в [6 - 12]. Отметим, что при выборе типа МПК необходимо, чтобы его система микрокоманд соот-ветствовала решаемому алгоритму. При этом особое значение приобретают микрокоманды, реализующие специальные функции, например умножение, деление, нормализацию чисел и т. п. Эти функции могут быть реализованы аппаратно на специализированных БИС, либо программно, например в МПК БИС КМ1804 [12]. Для ряда применений, не требующих высоких скоростей обработки информации, программная реализация специальных функций может оказаться предпочтительней, так как не требует дополнительных аппаратных затрат.
Число регистров общего назначения (РОН) определяет емкость внутренней сверхоперативной памяти МП и колеблется от 2 до 16. Увеличение числа РОН в МПК дает возможность хранить в них большее число исходных данных и промежуточных результатов вычислений. При этом в микропрограмме вычислений будут шире использоваться микрокоманды типа регистр-регистр, а следовательно, уменьшится число обращений к ЗУ. Быстродействие выполнения такой микропрограммы будет выше.
Прерывание представляет собой процедуру обмена данными с внешними устройствами. При этом инициатором обмена является внешнее устройство, которое посылает сигнал «Запрос на прерывание». Получив этот сигнал, МП приостанавливает выполнение основной программы и переходит к реализации специальной подпрограммы обмена, называемой подпрограммой обработки прерываний. Эта подпрограмма выключает ряд действий, описание которых можно найти в [10, 13]. Число уровней прерывания определяет число внешних устройств, способных обращаться к микропроцессору и обмениваться с ним информацией. Этот параметр имеет особое значение при использовании МПК для построения систем сбора и распределения данных, характеризующихся большим числом датчиков информации, имеющих различный приоритет.
Параметром, характеризующим быстродействие МПК, обычно является время цикла выполнения простейшей микрооперации. Поскольку микрокоманды состоят из последовательности микроопераций различной длины, то время цикла выполнения микроопераций дает очень относительное представление о реальном времени реализации микрокоманд. Один из методов определения времени выполнения микрокоманд приведен в Приложении. При совместном включении нескольких арифметических и управляющих устройств с различным быстродействием такт работы всего МПУ определяется длительностью такта устройства, обладающего меньшим быстродействием.
Число буферных регистров (портов) ввода-вывода является параметром, характеризующим структуру МПК БИС. Для секционированных МПК характерно использование многопортовых структур (обычно двух-трех). Увеличение числа портов ввода-вывода приводит к уменьшению длительности цикла выполнения микро-команды, упрощает построение МПУ, реализованных по «конвейерной» структуре. Остальные параметры МПК такие же, как и у Других цифровых микросхем. Это прежде всего уровни напряжений логических сигналов (U0 и U'), потребляемая мощность, устойчивость к изменениям напряжения питания, коэффициент объединения по входу, коэффициент разветвления по выходу (нагрузочная способность), помехоустойчивость и др.
Функциональная сложность МПК БИС определяется максимальными размерами полупроводниковых кристаллов, изготовление которых может обеспечить современный уровень развития технологии. Небольшие размеры кристаллов (до 50 мм2) требуют упрощения структур и ограничения разрядности БИС. Для опреде-ления содержимого внутренних регистров МП требуются специальные программы, обеспечивающие вывод содержимого регистров из МП. Большее число выводов БИС упрощает разработку МПУ. Однако корпуса, имеющие большее число выводов, занимают большую площадь на плате. Ограниченное число внешних вы-водов приводит к необходимости использования одних и тех же выводов для нескольких целей, например для ввода и вывода данных.
При построении МПУ необходимо обеспечить электрическое сопряжение между микросхемами МПК БИС. Условиями правильного сопряжения являются одинаковые представления логических О и 1 (U°, U1) и обеспечение допустимой нагрузки на каждый выход. При построении МПУ на одном или электрически совместимых МПК БИС первое условие выполняется и задача электрического сопряжения сводится к обеспечению допустимой нагрузки на каждый выход. Для МПК, выполненных по биполярной технологии, это условна может быть записано в виде неравенства [4]

I1 максУмножитель параллельный (8X8) КР1802ВРЗ 2206.42 - 2 tу=200 не; Рп = 3 Вт
Умножитель параллельный (12X12) КР1802ВР4 2136.64 - 1 tу=200 не; Рп=4 Вт Пвв=2; Пвыв=1
Умножитель параллельный (16X16) КР1802ВР5 2136.64 - 1 ty=200 не; Рп=5 Вт Пвв=2; ПвыВ=1
Сумматор на четыре входа К.Р1802ИМ1 2207.48 - 1 tс = 150 не Пвв=4; Пвыв=1
4-разрядная процессорная секция КМ1804ВС1 Серия КМ1804 2123.40 - 6 Uв=5 В±10%; Гц = 110 не.
Разрядность - кратная 4. Система команд по ОСТ 11.305.909 - 82 Аналог Ат2901
Схема формирования ускоренного переноса КМ1804ВР1 201.16 - 16
Аналог Ат2902
Схема управления последовательностью мк КМ1804ВУ1, КМ1804ВУ2 2121.28 - 1 2121.28 - 1
Аналоги: Ат2909 Ат2911
Схема выбора адреса следующей мк КМ1804ВУЗ 201.16 - 16 16 инструкций Ат2918
Параллельный 4-разрядный регистр КМ1804ИР1 201.16 - 16 Гц=20 не; Рп=0,65 Вт Ат2918
4-разрядная процессорная секция КМ1804ВС2 2123.40 - 6 Число РОН 16 Ат2903
Схема управления состоянием и сдвигами КМ1804ВР2 2123.40 - 6 t3 - 60 не. Число шин 2 Ат2904
Схема управления микропрограммой КМ1804ВУ4 2123.40 - 6 Гц=95 не; Рп=1,7 Вт Ат2910

Микропроцессорный комплект БИС К1800 выполнен по ЭСЛ-функционально-технологическому принципу. Микросхемы отличаются повышенными быстродействием и потребляемой мощностью. Архитектура МПК К1800, как и предыдущих, обеспечивает наращивание разрядности, микропрограммное управление, конвейерную организацию вычислений. Отличительной особенностью ЭСЛ-комплекта является ограниченный функциональный состав БИС, что затрудняет построение законченных МПУ только на МПК К1800. Комплект БИС К1800 электрически совместим с цифровыми микросхемами серий К500, К1500. Наличие в составе комплекта двунаправленного транслятора К1800ВА4 позволяет использовать совместно с К1800 МПК БИС ТТЛШ, например КР1802, КМ1804. При построении МПК К1800 использовался ряд схемо-технических и конструктивно-технологических особенностей построения быстродействующих микросхем, что позволило достигнуть степени интеграции до 1000 логических элементов (ЛЭ) на кристалле, снизить потребляемую мощность до 4 - 5 мВт на один ЛЭ и обеспечить время задержки 1 - 1,5 не на один ЛЭ [16].

1.3. Функциональная схема операционного устройства, построенного на МПК БИС К.Р1802

Микропроцессорный комплект БИС К588 выполнен по КМОП-функцианально-технологичесшму принципу. Важнейшей отличительной особенностью таких микросхем является низкая потребляемая мощность. В статическом режиме потребляемая мощность на один ЛЭ примерно в 100 раз меньше, чем у ТТЛ ЛЭ. В дина-мическом режиме (мощность, потребляемая КМОП-ехемами, увеличивается при повышении тактовой частоты. При тактовой частоте 1 - 2 МГц она всего в 5 - 10 раз меньше мощности, потребляемой ТТЛ-схемами. Комплект БИС К588 имеет несколько меньшее быстродействие, чем ТТЛШ МПК. Однако МПК К588 обеспечивает построение МПУ РЭА с ограниченным потреблением энергии.
Рассмотрим несколько примеров построения различных аппаратных средств на базе рассмотренных МПК БИС.
Пример 1.1. На рис. 1.3 приведена схема 16-разрядного операционного устройства МП [17]. Операционное устройство выполняет арифметические и логические операции над битами, полями битов, 16-разрядными словами; сдвиг 16-разрядных слов на один разряд вправо и влево. Управление работой операционного устройства осуществляется по шине микрокоманд (ШМК) и шине адреса (ШАД). Передача операндов осуществляется по шинам А и В, результат операции выдается на шину А.
Синхронизация считывания информации из регистров и записи результата в регистр выполняется синхроимпульсом (СИ), импульсами чтения (Чт), импульсами записи (Зп). Результат операции сопровождается выдачей признаков равенства нулю (ПН) результата, переполнения разрядной сетки (ПП) и расширения (ПР). Арифметическое устройство выполнено на двух БИС КР1802ВС1 (Dl, D2). Сверхоперативная память данных и результата выполнена на четырех БИС РОН КР1802ИР1 (D3 - D6). Емкость памяти 16X16.
Пример 1.2. Процессор микро-ЭВМ общего назначения. На рис. 1.4 приведена функциональная схема процессора с системой команд и интерфейсом микро-ЭВМ «Электроника-60» [18]. Процессор предназначен для применения в МПУ с жестко ограниченными энергетическими ресурсами и быстродействием до 400 тыс. коротких операций. При этом может быть использовано математическое обеспечение микро-ЭВМ «Электроника-60». Процессор выполнен на БИС МПК К588: К588ВС2 (D6), К588ВУ2 (D1 - D5), К588ВГ1 (D7). Каждая БИС управляющей памяти (D1 - D5) отличается информационным содержанием.

1.4. Функциональная схема микропроцессора, построенного на МПК БИС К588

Данные адреса и команды передаются по 16-разрядной совмещенной магистрали данных-адреса ДА0 - ДА15. Эта магистраль соединена с каналом К1 D6 и регистрами команд управляющей памяти (Dl - D5).
Четыре БИС (Dl - D4) формируют микрокоманды, управляющие работой ДУ (D6). 12-разрядные МК объединяются по схеме «проводное И» и подключаются к регистру микрокоманд АУ. Системный контроллер (СК) К588ВП управляется 5-разрядной МК, формируемой D5. Свободные разряды МК (МК5 - МКИ) вырабатывают сигналы разрешения прерывания по запросам ППРО - ППР4, ППРТ и сигнал «Останов». Поскольку длина микропрограмм, записанных в Dl - D5, различная, синхронизация приема кода команды осу-ществляется по сигналам «Конец команды», объединенным по схеме «Про» водное И».
Таблица 1.3
Новер линии Обозначение линий системной магистрали Назначение линий системной магистрали
1 - 5 СИА, Ввод, Вывод, СИП, Байт Линии сигналов синхронизации активного уст-ройства, ввода, вывода, синхронизации пассивного устройства и вывода байта
6 Останов Линия сигнала аппаратного останова
7 ПИТН Линия сигнала источника питания, сигнализи-рующая о нормальном уровне напряжения
питания
8 - 10 ТПДП, ППДП,
ппд Линии сигналов требования, представления и подтверждения захвата системной магистрали внешним устройством для ПДП
11, 12 Пуск 0, Пуск 1 Линии начального запуска процессора соединены с входами R0 и R1
13 - 17 ТПРО - ТПР4 Линии требования прерывания внешними уст-ройствами
18 ТПРТ Сброс Линия сигнала требования прерывания от таймера
19
Линия сигнала инициализации внешних устройств
20 - 24 ППРО - ППР4 Линии разрешения прерывания по запросам ТПРО - ТПР4
25, 26 ППРТ, Останов Линии разрешения прерывания по запросам ТПРТ и Останов
27, 28 а, С2 Линии управления магистральными приемо-передатчиками (активные уровни сигналов - низкие). При активном С1 направление передачи - от процессора, при активном С2- - к процессору. При пассивных уровнях - состояние «отключено»
29, 30 ТПР, ППР Линии сигналов требования и разрешения пре-рываний
31-46 ДАО - ДА 15 Двунаправленные линии передачи данных, адреса и команд

Внутри и внепроцессорный обмен информацией осуществляется по асинхронному принципу с помощью сигналов «Выдано» (В) и «Принято (Я). При этом сигналы «Принято» всех БИС объединены, а «Выдано» соединяются следующим образом: В1 СК и В АУ, В2 СК и В D1 - D3, ВЗ СК и В D4 и DS, При таком соединении сигналов синхронизации обеспечивается разделение во времени приема данных и команд и запрещение приема команды в D1 - DS при наличии разрешенного прерывания. Соединением выводов С и Ф1 АУ и СК с соответствующими выводами управляющей памяти обеспечивается синхронизация передачи-приема МК.
Код состояния АУ выдается в канал К2 и далее поступает в канал К2 D1 - D3. В регистр состояния (канал K2) D4 и DS поступают сигналы прерывания СК Лр1 - Пр4.
Сигналы R0 и Rl D1 - D5 предназначены для начального запуска процессора. При ошибочном обращении к магистрали СК вырабатывает сигнал Я, который переводит D1 - D5 в режим формирования микропрограммы прерывания, вызванной этим ошибочным обращением к магистрали.
Интерфейс системной магистрали процессора включает 46 линий (табл. 1.3), 30 из которых (1 - 10, 18, 19, 29-46) по назначению совпадает с соответствующими линиями интерфейса микро-ЭВМ «Электроника-60». Остальные линии (11 - 17, 20 - 28) являются дополнительными.
Система команд процессора включает все команды микро-ЭВМ «Электроника-60», а также команды расширенной арифметики с фиксированной точкой. Для повышения производительности процессора в микропрограммах применено совмещение во времени отдельных этапов выполнения команд: считывание последующей команды совмещено с выполнением текущей, считывание данных из памяти - с не зависящими от него операциями. Применяемый в процессоре МПК БИС К588 электрически совместим с микросхемами серий 564 (при напряжении питания 5 В) и микросхемами серии 530 (при подключении не более двух нагрузок). Для повышения нагрузочной способности выводов внешнего интерфейса БИС процессора их можно подключать к системной магистрали через приемопередатчик К588ВА1, обеспечивающий согласование с 20 ТТЛШ-нагрузками и работу на емкостную нагрузку до 300 пФ. Потребляемая процессором мощность в динамическом режиме около 100 мВт.
Развитие МПК ведется в направлениях, указанных в 1.1, а также путем [совершенствования технологии МОП-структур, что постепенно выдвигает КМОП БИС и СБИС в первые ряды не только по малой потребляемой мощности, но и по быстродействию.

Также по теме:
Новые программы для Windows, Linux и Android.